首页 >> 园区动态 >>产业新闻 >> 库存管理的难题用AI解决了多少?
详细内容

库存管理的难题用AI解决了多少?

时间:2024-09-10     【转载】

在现代物流管理中,仓储环节作为供应链的核心部分,其智能化、自动化水平直接影响到整个供应链的效率和成本。Al大模型以其强大的数据处理能力和深度学习能力,在智能仓储管理中展现出巨大潜力。

本文旨在探讨Al大模型在智能仓储管理中的应用价值,分析其在物流效率提升、库存精准预测、配送路径优化等方面的实际效能,并结合案例提出落地实施的难点与挑战及相应的策略建议,以期为相关企业提供实践指导和启示。

智能仓储管理三大问题:精准预测需求、智能优化路径、提高配送准确性

为深入了解智能仓储管理在应用当中存在的问题,虎嗅智库调研一些企业后,发现智能仓储管理三大问题精准预测需求、智能优化路径、提高配送准确性。

首先需求预测的不确定性是库存管理的一大难题。以某电子产品制造企业为例,其产品生命周期短,市场需求变化快,传统的预测方法往往难以准确预测未来的销售情况,导致库存积压或者缺货的情况时有发生。

遥望科技供应链负责人表示,对于零售企业来说,供应链的复杂性也给企业库存管理带来了巨大挑战。通常服装零售企业供应链涉及原材料供应商、生产厂家、物流配送等多个环节,任何一个环节出现问题都可能影响库存管理,打乱库存计划。

此外,提升物流效率和准确度、优化配送路径和提高配送准时性等也是智能仓储管理中普遍会面临的问题。

Al大模型贯穿全流程,小模型精准赋能各环节

当下,Al大模型的出现为库存管理带来新的机遇。Al大模型具有强大的计算能力和深度学习功能,能够处理大量的数据,为企业提供精准的库存预测和优化方案。

通过分析历史销售数据、市场趋势、供应链信息等多源数据,Al大模型可以准确预测未来的库存需求,帮助企业避免库存过剩或缺货的情况,降低库存成本,提高资金周转率。同时,Al大模型还可以优化库存调拨策略,提高物流效率,为企业的库存管理提供更加科学、高效的解决方案。

图:智能仓储对Al大模型能力的需求


来源:虎嗅智库

顺丰科技人工智能总工程师高磊认为,智能仓储管理在现代物流中扮演着"核心枢纽与关键赋能者"的角色。它是连接生产与销售、优化物流流程、提升供应链效率和增强企业竞争力的关键环节。

目前,Al大模型在货物入库、存储、拣选、打包到出库的智能仓储管理中的全流程中都已有应用,已经成为推动智能仓储管理进一步发展的强大动力。

表:Al大模型在智能仓储管理的全流程应用

来源:虎嗅智库

库存管理领域Al模型应用主要分为需求预测、库存优化、供应链协调模型等三类。

需求预测模型基于Al大模型结合时间序列分析和机器学习算法,可捕捉数据时间依赖性及学习不同因素与需求关系。分析结合社交媒体数据、天气数据等外部因素可提高预测准确性,如社交媒体反映消费者兴趣和需求变化,天气影响某些产品需求变化等。

电商行业,尤其需要快速精准的预测库存来跟进市场需求变化。虎嗅智库的企业调研中,我们发现一家电商企业因为经营多种品类的商品,库存管理难度较大。过去,由于传统的库存预测方法不够精准,经常出现库存积压或缺货的情况,尤其是在促销活动期间,库存问题更为突出。

后来,该企业引入Al大模型进行库存管理。首先,整合内部订单系统、仓库管理系统数据以及外部的市场趋势数据、竞争对手价格数据等;

然后,构建基于深度学习的库存预测模型,对不同品类商品的库存需求进行预测。模型考虑了产品的历史销售数据、季节性因素、促销活动影响、竞争对手价格波动对本企业销量的影响等多方面因素。

最终,通过Al大模型的应用,在促销活动期间,库存预测准确率提高30%以上,库存周转率得到显著提升,库存积压情况明显减少,缺货率也降低20%左右。

库存优化模型旨在降低库存成本、提高资金利用效率,目标是在满足客户需求前提下,通过合理确定库存水平、优化库存结构等方法实现。Al大模型分析历史销售数据和供应链数据,可确定最佳库存水平,实现库存自动调整和优化。

在制造业企业当中,原材料库存管理可以说是影响整个产线成本的核心要素。某制造业企业在原材料库存管理方面就存在一些典型问题。首先,原材料需求的不确定性较大,由于生产计划的调整、市场需求的变化等因素,难以准确预测原材料的需求量。其次,原材料的采购周期较长,一旦出现缺货情况,会影响生产进度。此外,原材料的库存成本较高,占用了大量的资金。


电话:400-000-0000
邮箱:12345678@126.COM
地址:北京市XX区XX路XX大厦XXX室
COPYRIGHT 2013-2017 京ICP备10000000号-0
seo seo